2023中考數(shù)學(xué)知識點總結(jié)
1、二次函數(shù)的概念
一般地,如果,那么y叫做x 的二次函數(shù)。
叫做二次函數(shù)的一般式。
2、二次函數(shù)的圖像
二次函數(shù)的圖像是一條關(guān)于對稱的曲線,這條曲線叫拋物線。
拋物線的主要特征:
①有開口方向;②有對稱軸;③有頂點。
3、二次函數(shù)圖像的畫法
五點法:
(1)先根據(jù)函數(shù)解析式,求出頂點坐標(biāo),在平面直角坐標(biāo)系中描出頂點M,并用虛線畫出對稱軸
(2)求拋物線與坐標(biāo)軸的交點:
當(dāng)拋物線與x軸有兩個交點時,描出這兩個交點A,B及拋物線與y軸的交點C,再找到點C的對稱點D。將這五個點按從左到右的順序連接起來,并向上或向下延伸,就得到二次函數(shù)的圖像。
當(dāng)拋物線與x軸只有一個交點或無交點時,描出拋物線與y軸的交點C及對稱點D。由C、M、D三點可粗略地畫出二次函數(shù)的草圖。如果需要畫出比較精確的圖像,可再描出一對對稱點A、B,然后順次連接五點,畫出二次函數(shù)的圖像。
中考數(shù)學(xué)難點
二次函數(shù)的解析式有三種形式:
(1)一般式:
(2)頂點式:
(3)當(dāng)拋物線與x軸有交點時,即對應(yīng)二次好方程有實根和存在時,根據(jù)二次三項式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒有交點,則不能這樣表示。
注意:拋物線位置由決定.
(1)決定拋物線的開口方向
①開口向上.
②開口向下.
(2)決定拋物線與y軸交點的位置.
①圖象與y軸交點在x軸上方.
②圖象過原點.
③圖象與y軸交點在x軸下方.
(3)決定拋物線對稱軸的位置(對稱軸:)
①同號對稱軸在y軸左側(cè).
②對稱軸是y軸.
③異號對稱軸在y軸右側(cè).
(4)頂點坐標(biāo).
(5)決定拋物線與x軸的交點情況.、
①△>0拋物線與x軸有兩個不同交點.
②△=0拋物線與x軸有的公共點(相切).
③△<0拋物線與x軸無公共點.
(6)二次函數(shù)是否具有、最小值由a判斷.
①當(dāng)a>0時,拋物線有最低點,函數(shù)有最小值.
②當(dāng)a<0時,拋物線有點,函數(shù)有值.
(7)的符號的判定:
表達式,請代值,對應(yīng)y值定正負(fù);
對稱軸,用處多,三種式子相約;
軸兩側(cè)判,左同右異中為0;
1的兩側(cè)判,左同右異中為0;
-1兩側(cè)判,左異右同中為0.
(8)函數(shù)圖象的平移:左右平移變x,左+右-;上下平移變常數(shù)項,上+下-;平移結(jié)果先知道,反向平移是訣竅;平移方式不知道,通過頂點來尋找。
(9)對稱:關(guān)于x軸對稱的解析式為,關(guān)于y軸對稱的解析式為,關(guān)于原點軸對稱的解析式為,在頂點處翻折后的解析式為(a相反,定點坐標(biāo)不變)。
(10)結(jié)論:①二次函數(shù)(與x軸只有一個交點二次函數(shù)的頂點在x軸上Δ=0;
②二次函數(shù)(的頂點在y軸上二次函數(shù)的圖象關(guān)于y軸對稱;
③二次函數(shù)(經(jīng)過原點,則。
(11)二次函數(shù)的解析式:
①一般式:(,用于已知三點。
②頂點式:,用于已知頂點坐標(biāo)或最值或?qū)ΨQ軸。
(3)交點式:,其中、是二次函數(shù)與x軸的兩個交點的橫坐標(biāo)。若已知對稱軸和在x軸上的截距,也可用此式。
中考數(shù)學(xué)考點
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標(biāo)軸,但永遠達不到坐標(biāo)軸。
3、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,
y的取值范圍是y0;
②當(dāng)k>0時,函數(shù)圖像的兩個分支分別
在第一、三象限。在每個象限內(nèi),y
隨x 的增大而減小。
①x的取值范圍是x0,
y的取值范圍是y0;
②當(dāng)k<0時,函數(shù)圖像的兩個分支分別
在第二、四象限。在每個象限內(nèi),y
隨x 的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個待定系數(shù),因此只需要一對對應(yīng)值或圖像上的一個點的坐標(biāo),即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設(shè)是反比例函數(shù)圖象上任一點,過點P作軸、軸的垂線,垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
中考數(shù)學(xué)知要點
1、cos30°=。
2、sin260°+cos260°=1。
3、2sin30°+tan45°=2。
4、tan45°=1。
5、cos60°+sin30°=1。
中考數(shù)學(xué)重點
1、半圓或直徑所對的圓周角是直角。
2、任意一個三角形一定有一個外接圓。
3、在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
4、在同圓或等圓中,相等的圓心角所對的弧相等。
5、同弧所對的圓周角等于圓心角的一半。
6、同圓或等圓的半徑相等。
7、過三個點一定可以作一個圓。
8、長度相等的兩條弧是等弧。
9、在同圓或等圓中,相等的圓心角所對的弧相等。
10、經(jīng)過圓心平分弦的`直徑垂直于弦。