2023高中數學高考知識點總結
1、 心理素質。我們在高中學習環境下取決于我們是否具有面對挫折、冷靜分析問題的辦法。當我們面對困難時不應產生畏懼感,面對失敗時不應灰心喪氣,而要勇于正視自己,及時作出總結教訓,改變學習方法。
2、 學習方式、習慣的反思與認識。(1) 學習的主動性。我們在進入高中以后,不能還像初中時那樣有很強的依賴心理,不訂學習計劃,坐等上課,課前不預習,上課忙于記筆記而忽略了真正的聽課,顧此失彼,被動學習。(2) 學習的條理性。我們在每學習一課內容時,要學會將知識有條理地分為若干類,剖析概念的內涵外延,重點難點要突出。不要忙于記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結,而忙于套著題型趕作業,對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3) 忽視基礎。在我身邊,常有些“自我感覺良好”的同學,忽視基礎知識、基本技能和基本方法,不能牢牢地抓住課本,而是偏重于對難題的攻解,好高騖遠,重“量”而輕“質”,陷入題海,往往在考試中不是演算錯誤就是中途“卡殼”。(4) 不良習慣。主要有對答案,卷面書寫不工整,格式不規范,不相信自己的結論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養成一種依賴于老師解說的心理,做作業不講究效率,學習效率不高。
二、 努力提高自己的學習能力。
1、 抓要點提高學習效率。(1) 抓教材處理。正所謂“萬變不離其中”。要知道,教材始終是我們學習的根本依據。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內容在教材中的地位,并將前后知識聯系起來,把握教材,才能掌握學習的主動性。(2) 抓問題暴露。對于那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3) 抓思維訓練。數學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養出來的。(5) 抓45分鐘課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄希望于課外去補,則會使學習效率大打折扣。
人教版高一數學知識點整理
考點一、映射的概念
1.了解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多
2.映射:設A和B是兩個非空集合,如果按照某種對應關系f,對于集合A中的任意一個元素_,在集合B中都存在的一個元素y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應,簡稱“對一”的對應。包括:一對一多對一
考點二、函數的概念
1.函數:設A和B是兩個非空的數集,如果按照某種確定的對應關系f,對于集合A中的任意一個數_,在集合B中都存在確定的數y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個函數。記作y=f(_),_A.其中_叫自變量,_的取值范圍A叫函數的定義域;與_的值相對應的y的值函數值,函數值的集合叫做函數的值域。函數是特殊的映射,是非空數集A到非空數集B的映射。
2.函數的三要素:定義域、值域、對應關系。這是判斷兩個函數是否為同一函數的依據。
3.區間的概念:設a,bR,且a
①(a,b)={_a
⑤(a,+∞)={__>a}⑥[a,+∞)={__≥a}⑦(-∞,b)={__
考點三、函數的表示方法
1.函數的三種表示方法列表法圖象法解析法
2.分段函數:定義域的不同部分,有不同的對應法則的函數。注意兩點:①分段函數是一個函數,不要誤認為是幾個函數。②分段函數的定義域是各段定義域的并集,值域是各段值域的并集。
考點四、求定義域的幾種情況
①若f(_)是整式,則函數的定義域是實數集R;
②若f(_)是分式,則函數的定義域是使分母不等于0的實數集;
③若f(_)是二次根式,則函數的定義域是使根號內的式子大于或等于0的實數集合;
④若f(_)是對數函數,真數應大于零。
⑤.因為零的零次冪沒有意義,所以底數和指數不能同時為零。
⑥若f(_)是由幾個部分的數學式子構成的,則函數的定義域是使各部分式子都有意義的實數集合;
⑦若f(_)是由實際問題抽象出來的函數,則函數的定義域應符合實際問題
高考相關考點:
1. 集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡易邏輯、充要條件
2. 函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數函數、對數函數、函數的應用
3. 數列:數列的有關概念、等差數列、等比數列、數列求通項、求和
4. 三角函數:有關概念、同角關系與誘導公式、和差倍半公式、求值、化簡、證明、三角函數的圖像及其性質、應用
5. 平面向量:初等運算、坐標運算、數量積及其應用
6. 不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經常出現在大題的選做題里)、不等式的應用
7. 直線與圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系
8. 圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用
9. 直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量
10. 排列、組合和概率:排列、組合應用題、二項式定理及其應用
11. 概率與統計:概率、分布列、期望、方差、抽樣、正態分布
12. 導數:導數的概念、求導、導數的應用
13. 復數:復數的概念與運算
高中數學易錯知識點整理
一.集合與函數
1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進行求解.
2.在應用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關問題嗎?
4.簡單命題與復合命題有什么區別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區別.
6.求解與函數有關的問題易忽略定義域優先的原則.
7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關于__對稱.
8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.
9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調.例如:.
10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值,作差,判正負)和導數法
11.求函數單調性時,易錯誤地在多個單調區間之間添加符號“∪”和“或”;單調區間不能用集合或不等式表示.
12.求函數的值域必須先求函數的定義域。
13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恒成立問題).這幾種基本應用你掌握了嗎?
14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?
(真數大于零,底數大于零且不等于1)字母底數還需討論
15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?
16.用換元法解題時易忽略換元前后的等價性,易忽略參數的范圍。
17.“實系數一元二次方程有實數解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?
二.不等式
18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.
19.絕對值不等式的解法及其幾何意義是什么?
20.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?
21.解含參數不等式的通法是“定義域為前提,函數的單調性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區間表示;不能用不等式表示.
23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.
三.數列
24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?
25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。
26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什么樣的無窮等比數列的所有項的和必定存在?
27.數列單調性問題能否等同于對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續的。)
28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。
四.三角函數
29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區別嗎?
30.三角函數的定義及單位圓內的三角函數線(正弦線、余弦線、正切線)的定義你知道嗎?
31.在解三角問題時,你注意到正切函數、余切函數的定義域了嗎?你注意到正弦函數、余弦函數的有界性了嗎?
32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反余弦、反正切函數的取值范圍分別是
34.你還記得某些特殊角的三角函數值嗎?
35.掌握正弦函數、余弦函數及正切函數的圖象和性質.你會寫三角函數的單調區間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?
36.函數的圖象的平移,方程的平移以及點的平移公式易混:
(1)函數的圖象的平移為“左+右-,上+下-”;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.
(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.
(3)點的平移公式:點按向量平移到點,則.
37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時易忘比值還等于2R.
五.平面向量
40.數0有區別,的模為數0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。
41.數量積與兩個實數乘積的區別:
在實數中:若,且ab=0,則b=0,但在向量的數量積中,若,且,不能推出.
已知實數,且,則a=c,但在向量的數量積中沒有.
在實數中有,但是在向量的數量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量.
42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。
六.解析幾何
43.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?
44.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。
45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。
46.定比分點的坐標公式是什么?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?
47.對不重合的兩條直線
(建議在解題時,討論后利用斜率和截距)
48.直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。
49.解決線性規劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達.(①設出變量,寫出目標函數②寫出線性約束條件③畫出可行域④作出目標函數對應的系列平行線,找到并求出最優解⑦應用題一定要有答。)
50.三種圓錐曲線的定義、圖形、標準方程、幾何性質,橢圓與雙曲線中的兩個特征三角形你掌握了嗎?
51.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問題?
52.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前后項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?
53.通徑是拋物線的所有焦點弦中最短的弦.(想一想在雙曲線中的結論?)
54.在用圓錐曲線與直線聯立求解時,消元后得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線二次項系數為零時直線與其只有一個交點,判別式的限制.(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).
55.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經有坐標系了,是否需要建立直角坐標系?
七.立體幾何
56.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。
57.線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什么?
58.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見
59.線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行”而導致證明過程跨步太大.
60.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法.
61.異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發,是用銳角還是其補角,還是兩種情況都有可能。
62.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?
63.兩條異面直線所成的角的范圍:0°<α≤90° >
直線與平面所成的角的范圍:0o≤α≤90°
二面角的平面角的取值范圍:0°≤α≤180°
64.你知道異面直線上兩點間的距離公式如何運用嗎?
65.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前后有關幾何元素的“不變量”與“不變性”。
66.立幾問題的求解分為“作”,“證”,“算”三個環節,你是否只注重了“作”,“算”,而忽視了“證”這一重要環節?
67.棱柱及其性質、平行六面體與長方體及其性質.這些知識你掌握了嗎?(注意運用向量的方法解題)
68.球及其性質;經緯度定義易混.經度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式.這些知識你掌握了嗎?
高中語文知識點
1、安步當車:古代稱人能安貧守賤。現多用以表示不乘車而從容不迫地步行。
2、安土重還:安于本鄉本土,不愿輕易遷移。
3、篳路藍縷:駕著柴車,穿著破舊的衣服去開辟山林。形容創作的艱苦。
4、杯水車薪:用一杯水去救一車著了火的柴。比喻無濟于事。
5、別無長物:沒有多余的東西,形容窮困或簡樸。
6、不孚眾望:不能使群眾信服。
7、不為已甚:指對別人的責備或處罰適可而止。
8、不落窠臼:比喻有獨創風格,不落舊套。
9、不容置喙:不容別人插嘴。
10、不塞不流,不止不行:比喻舊思想文化不予以破壞,新思想、新文化就不能樹立起來。
11、不以為然:不認為是對的,含有輕視之意。
12、不以為意: 不放在心上,不加注意。
13、不刊之論:形容不能改動或不可磨滅的言論。
14、蠶食鯨吞:用各種方式侵占吞并。
15、分庭抗禮:現在用來比喻平起平坐,互相對立。
16、狗尾續貂:比喻拿不好的東西接到好的東西后面,顯得好壞不相稱(多指文學作品)
17、管窺蠡測:比喻對事物的觀察和了解很狹隘、很片面。
18、沆瀣一氣:比喻臭味相投的人結合在一起。
19、怙惡不悛:堅持作惡,不肯悔改。
20、諱莫如深:隱瞞的再沒有比它更深的了。
21、濟濟一堂:形容很多有才能的人聚集在一起。
22、集腋成裘:積少可以成多。
23、間不容發:距離極近,中間不能放一根頭發,比喻情勢危急到了極點。
24、見微知著:見到微小的跡象,就能察知發展的趨勢。
25、江河日下:比喻情況一天天壞下去。
26、膠柱鼓瑟:比喻拘泥固執,不知變通。
27、開門揖盜:比喻引進壞人,自招禍患。
28、梁上君子:代稱竊賊。
29、屢試不爽:屢次實驗沒有差錯。
30、鱗次櫛比:形容屋舍或船只等排列的很密,很整齊。
31、令行禁止:有令必行,有禁必止,形容嚴格執行法令。
32、披肝瀝膽:比喻真心相見,傾吐心里話。
33、期期艾艾:形容口吃。
34、如數家珍:比喻對所講的事情十分熟悉。
35、三緘其口:形容說話過分謹慎,不敢或不肯開口。
36、三人成虎:比喻謠言或訛傳一再反復,就有使人信以為真的可能。
37、色厲內荏:外表強硬,內心空虛。
38、尸位素餐:空站著職位,不做事而白吃飯。
39、拾人牙慧:拾取人家只言片語當作自己的話。
40、石破天驚:多用來比喻文章議論新奇驚人。
41、彈冠相慶:指一人當了官或升官,他的同伙也相互慶賀有官可做。
42、桃李不言,下自成蹊:比喻只要為人真誠,忠實,為人品德高尚就自然受到人們的尊重和景仰。
43、為淵驅魚、為叢驅雀:比喻不善于團結或籠絡人,把可以依靠的力量趕到敵人方面去。
44、文不加點:形容寫文章很快,不用涂改就寫成。
45、五風十雨:形容風調雨順。
46、宵衣旰食:天不亮就穿衣起來,天黑了才吃飯。形容勤于政務。
47、烜赫一時:在一個時期內,名聲威勢很盛。
48、虛與委蛇:對人虛情假意,敷衍應酬。
49、一傅眾咻:一人教,眾多的人干擾。
50、余能可賈:還有力量沒有用完。