久久九九视频_亚洲午夜一区_亚洲女人天堂色在线7777_国产区一区二区三区_成人7777_国产高清一区二区三区_国产精品久久久久久久久

計劃總結網 > 考試 > 學歷類考試 > 高考頻道 > 高考科目 > 高考數學 >

高考數學常考知識點內容

時間: 麗菲 高考數學

一、集合與函數

1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進行求解。

2.在應用條件時,易A忽略是空集的情況

3.你會用補集的思想解決有關問題嗎?

4.簡單命題與復合命題有什么區別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?

5.你知道“否命題”與“命題的否定形式”的區別。

6.求解與函數有關的問題易忽略定義域優先的原則。

7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關于原點對稱。

8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域。

9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調。例如:。

10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值, 作差, 判正負)和導數法

11. 求函數單調性時,易錯誤地在多個單調區間之間添加符號“∪”和“或”;單調區間不能用集合或不等式表示。

12.求函數的值域必須先求函數的定義域。

13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恒成立問題).這幾種基本應用你掌握了嗎?

14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?

(真數大于零,底數大于零且不等于1)字母底數還需討論

15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?

16.用換元法解題時易忽略換元前后的等價性,易忽略參數的范圍。

17.“實系數一元二次方程有實數解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?

二、不等式

1.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”。

2.絕對值不等式的解法及其幾何意義是什么?

3.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?

4.解含參數不等式的通法是“定義域為前提,函數的單調性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

5. 在求不等式的解集、定義域及值域時,其結果一定要用集合或區間表示;不能用不等式表示。

6. 兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a

三、數列

1.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?

2.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。

3.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什么樣的無窮等比數列的所有項的和必定存在?

4.數列單調性問題能否等同于對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續的。)

5.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。

四、三角函數

1.正角、負角、零角、象限角的概念你清楚嗎,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區別嗎?

2.三角函數的定義及單位圓內的三角函數線(正弦線、余弦線、正切線)的定義你知道嗎?

3. 在解三角問題時,你注意到正切函數、余切函數的定義域了嗎?你注意到正弦函數、余弦函數的有界性了嗎?

4. 你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角。 異角化同角,異名化同名,高次化低次)

5. 反正弦、反余弦、反正切函數的取值范圍分別是

6.你還記得某些特殊角的三角函數值嗎?

7.掌握正弦函數、余弦函數及正切函數的圖象和性質。你會寫三角函數的單調區間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?

五、平面向量

1.數0有區別,的模為數0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。

2數量積與兩個實數乘積的區別:

在實數中:若,且ab=0,則b=0,但在向量的數量積中,若,且,不能推出。

已知實數,且,則a=c,但在向量的數量積中沒有。

在實數中有,但是在向量的數量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量。

3.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。

六、解析幾何

1.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?

2.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。

3.直線的傾斜角、到的角、與的夾角的取值范圍依次是。

4. 定比分點的坐標公式是什么?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?

5. 對不重合的兩條直線

(建議在解題時,討論后利用斜率和截距)

6. 直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。

7.解決線性規劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達。(①設出變量,寫出目標函數②寫出線性約束條件③畫出可行域④作出目標函數對應的系列平行線,找到并求出最優解⑦應用題一定要有答。)

8.三種圓錐曲線的定義、圖形、標準方程、幾何性質,橢圓與雙曲線中的兩個特征三角形你掌握了嗎?

9.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問題?

10.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前后項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?

11. 通徑是拋物線的所有焦點弦中最短的弦。(想一想在雙曲線中的結論?)

12. 在用圓錐曲線與直線聯立求解時,消元后得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線二次項系數為零時直線與其只有一個交點,判別式的限制。(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).

13.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經有坐標系了,是否需要建立直角坐標系?

七、立體幾何

1.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。

2.線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什么?

3.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見

4.線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行”而導致證明過程跨步太大。

5.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

6.異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發,是用銳角還是其補角,還是兩種情況都有可能。

7.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?

8. 兩條異面直線所成的角的范圍:0°<α≤90°< p="">

直線與平面所成的角的范圍:0o≤α≤90°

高考數學知識點總結

第一部分集合

(1)含n個元素的集合的子集數為2^n,真子集數為2^n—1;非空真子集的數為2^n—2;

(2)注意:討論的時候不要遺忘了的情況。

第二部分函數與導數

1、映射:注意

①第一個集合中的元素必須有象;

②一對一,或多對一。

2、函數值域的求法:

①分析法;

②配方法;

③判別式法;

④利用函數單調性;

⑤換元法;

⑥利用均值不等式;

⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);

⑧利用函數有界性;

⑨導數法

3、復合函數的有關問題

(1)復合函數定義域求法:

①若f(x)的定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出。

②若f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域。

(2)復合函數單調性的判定:

①首先將原函數分解為基本函數:內函數與外函數;

②分別研究內、外函數在各自定義域內的單調性;

③根據“同性則增,異性則減”來判斷原函數在其定義域內的單調性。

注意:外函數的定義域是內函數的值域。

4、分段函數:值域(最值)、單調性、圖象等問題,先分段解決,再下結論。

5、函數的奇偶性

(1)函數的定義域關于原點對稱是函數具有奇偶性的必要條件;

(2)是奇函數;

(3)是偶函數;

(4)奇函數在原點有定義,則;

(5)在關于原點對稱的單調區間內:奇函數有相同的單調性,偶函數有相反的單調性;

(6)若所給函數的解析式較為復雜,應先等價變形,再判斷其奇偶性;

高考數學知識點梳理

1.數列的定義、分類與通項公式

(1)數列的定義:

①數列:按照一定順序排列的一列數.

②數列的項:數列中的每一個數.

(2)數列的分類:

分類標準類型滿足條件

項數有窮數列項數有限

無窮數列項數無限

項與項間的大小關系遞增數列an+1>an其中n∈N.

遞減數列an+1<an< p="">

常數列an+1=an

(3)數列的通項公式:

如果數列{an}的第n項與序號n之間的關系可以用一個式子來表示,那么這個公式叫做這個數列的通項公式.

2.數列的遞推公式

如果已知數列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關系可用一個公式來表示,那么這個公式叫數列的遞推公式.

3.對數列概念的理解

(1)數列是按一定“順序”排列的一列數,一個數列不僅與構成它的“數”有關,而且還與這些“數”的排列順序有關,這有別于集合中元素的無序性.因此,若組成兩個數列的數相同而排列次序不同,那么它們就是不同的兩個數列.

(2)數列中的數可以重復出現,而集合中的元素不能重復出現,這也是數列與數集的區別.

4.數列的函數特征

數列是一個定義域為正整數集N.(或它的有限子集{1,2,3,…,n})的特殊函數,數列的通項公式也就是相應的函數解析式,即f(n)=an(n∈N.).

41798 主站蜘蛛池模板: 欧美一级特黄特色大片免费 | 国产成人咱精品视频免费网站 | 欧洲区二区三区四区 | 久久午夜宅男免费网站 | 伊人网综合视频 | 激情文学图片 | 日本xxxx高清在线观看免费 | 精品国产自 | 日本三级网站在线线观看 | 欧美一级一一特黄 | 国产精品久久久久久搜索 | 亚洲三级天堂 | 免费视频左左视频 | 国产一卡2卡3卡4卡网站免费 | 欧美日韩国产在线人 | 在线欧洲成人免费视频 | 国产精品资源网站在线观看 | 国产成人91高清精品免费 | 国内自拍视频一区二区三区 | 夜夜操综合 | 久久久久久亚洲精品 | 久草视频免费在线播放 | 热国产热综合 | 免费看黄软件大全 | 日韩一区二区三区视频在线观看 | 中文成人在线视频 | 免费一级特黄特色黄大任片 | a视频在线观看免费 | 欧美午夜视频一区二区三区 | 日本三级网站在线观看 | 欧美xxxx色视频在线观看免费 | 国产精品资源在线观看网站 | a视频在线免费观看 | 日本美女一级黄色片 | a久久99精品久久久久久不 | 久久国产国内精品对话对白 | 九操网| 国产精品福利午夜一级毛片 | 久久精品系列 | 亚洲品质自拍视频 | 香港日本韩国三级网站 |