新高考數學必考知識點
第一、高考數學中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節。
主要是考函數和導數,這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
第二、平面向量和三角函數。
重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數的圖像和性質,這里重點掌握正弦函數和余弦函數的性質,第三,正弦定理和余弦定理來解三角形。難度比較小。
第三、數列。
數列這個板塊,重點考兩個方面:一個通項;一個是求和。
第四、空間向量和立體幾何,在里面重點考察兩個方面:一個是證明;一個是計算。
第五、概率和統計。
這一板塊主要是屬于數學應用問題的范疇,當然應該掌握下面幾個方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復事件發生的概率。
第六、解析幾何。
這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當然這一類題,我總結下面五類常考的題型,包括:
第一類所講的直線和曲線的位置關系,這是考試最多的內容。考生應該掌握它的通法;
第二類我們所講的動點問題;
第三類是弦長問題;
第四類是對稱問題,這也是_年高考已經考過的一點;
第五類重點問題,這類題時往往覺得有思路,但是沒有答案,
當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。
第七、押軸題。
考生在備考復習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。
高三數學知識點總結:抽樣方法
隨機抽樣
簡介
(抽簽法、隨機樣數表法)常常用于總體個數較少時,它的主要特征是從總體中逐個抽取;
優點:操作簡便易行
缺點:總體過大不易實行
方法
(1)抽簽法
一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續抽取n次,就得到一個容量為n的樣本。
(抽簽法簡單易行,適用于總體中的個數不多時。當總體中的個體數較多時,將總體“攪拌均勻”就比較困難,用抽簽法產生的樣本代表性差的可能性很大)
(2)隨機數法
隨機抽樣中,另一個經常被采用的方法是隨機數法,即利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣。
分層抽樣
簡介
分層抽樣主要特征分層按比例抽樣,主要使用于總體中的個體有明顯差異。共同點:每個個體被抽到的概率都相等N/M。
定義
一般地,在抽樣時,將總體分成互不交叉的層,然后按照一定的比例,從各層獨立地抽取一定數量的個體,將各層取出的個體合在一起作為樣本,這種抽樣方法是一種分層抽樣。
整群抽樣
定義
什么是整群抽樣
整群抽樣又稱聚類抽樣。是將總體中各單位歸并成若干個互不交叉、互不重復的集合,稱之為群;然后以群為抽樣單位抽取樣本的一種抽樣方式。
應用整群抽樣時,要求各群有較好的代表性,即群內各單位的差異要大,群間差異要小。
優缺點
整群抽樣的優點是實施方便、節省經費;
整群抽樣的缺點是往往由于不同群之間的差異較大,由此而引起的抽樣誤差往往大于簡單隨機抽樣。
實施步驟
先將總體分為i個群,然后從i個群鐘隨即抽取若干個群,對這些群內所有個體或單元均進行調查。抽樣過程可分為以下幾個步驟:
一、確定分群的標注
二、總體(N)分成若干個互不重疊的部分,每個部分為一群。
三、據各樣本量,確定應該抽取的群數。
四、采用簡單隨機抽樣或系統抽樣方法,從i群中抽取確定的群數。
例如,調查中學生患近視眼的情況,抽某一個班做統計;進行產品檢驗;每隔8h抽1h生產的全部產品進行檢驗等。
與分層抽樣的區別
整群抽樣與分層抽樣在形式上有相似之處,但實際上差別很大。
分層抽樣要求各層之間的差異很大,層內個體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內個體或單元差異大;
分層抽樣的樣本是從每個層內抽取若干單元或個體構成,而整群抽樣則是要么整群抽取,要么整群不被抽取。
系統抽樣
定義
當總體中的個體數較多時,采用簡單隨機抽樣顯得較為費事。這時,可將總體分成均衡的幾個部分,然后按照預先定出的規則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統抽樣。
步驟
一般地,假設要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進行系統抽樣:
(1)先將總體的N個個體編號。有時可直接利用個體自身所帶的號碼,如學號、準考證號、門牌號等;
(2)確定分段間隔k,對編號進行分段。當N/n(n是樣本容量)是整數時,取k=N/n;
(3)在第一段用簡單隨機抽樣確定第一個個體編號l(l≤k);
(4)按照一定的規則抽取樣本。通常是將l加上間隔k得到第2個個體編號(l+k),再加k得到第3個個體編號(l+2k),依次進行下去,直到獲取整個樣本。
高三數學知識點整理
1.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。
2.判定兩個平面平行的方法:
(1)根據定義--證明兩平面沒有公共點;
(2)判定定理--證明一個平面內的兩條相交直線都平行于另一個平面;
(3)證明兩平面同垂直于一條直線。
3.兩個平面平行的主要性質:
(1)由定義知:“兩平行平面沒有公共點”;
(2)由定義推得:“兩個平面平行,其中一個平面內的直線必平行于另一個平面”;
(3)兩個平面平行的性質定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;
(4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;
(5)夾在兩個平行平面間的平行線段相等;
(6)經過平面外一點只有一個平面和已知平面平行。
高三數學知識點歸納總結
1.等差數列的定義
如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示.
2.等差數列的通項公式
若等差數列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.
3.等差中項
如果A=(a+b)/2,那么A叫做a與b的等差中項.
4.等差數列的常用性質
(1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).
(2)若{an}為等差數列,且m+n=p+q,
則am+an=ap+aq(m,n,p,q∈N_).
(3)若{an}是等差數列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數列.
(4)數列Sm,S2m-Sm,S3m-S2m,…也是等差數列.
(5)S2n-1=(2n-1)an.
(6)若n為偶數,則S偶-S奇=nd/2;
若n為奇數,則S奇-S偶=a中(中間項).
注意:
一個推導
利用倒序相加法推導等差數列的前n項和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
①+②得:Sn=n(a1+an)/2
兩個技巧
已知三個或四個數組成等差數列的一類問題,要善于設元.
(1)若奇數個數成等差數列且和為定值時,可設為…,a-2d,a-d,a,a+d,a+2d,….
(2)若偶數個數成等差數列且和為定值時,可設為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據等差數列的定義進行對稱設元.
四種方法
等差數列的判斷方法
(1)定義法:對于n≥2的任意自然數,驗證an-an-1為同一常數;
(2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;
(3)通項公式法:驗證an=pn+q;
(4)前n項和公式法:驗證Sn=An2+Bn.
注:后兩種方法只能用來判斷是否為等差數列,而不能用來證明等差數列.