2018考研數學高數高頻考點總結
高等數學是考研數學的重中之重,所占的比重較大,在數學一、三中占56%,數學二中占78%,重點難點較多。為了幫助提高大家高效復習,本文為大家梳理了高等數學的常考考點,希望大家不要盲目復習,加強鞏固以下知識點。
2018考研數學高數高頻考點總結
▶函數、極限與連續
求分段函數的復合函數;
求極限或已知極限確定原式中的常數;
討論函數的連續性,判斷間斷點的類型;
無窮小階的比較;
討論連續函數在給定區間上零點的個數,或確定方程在給定區間上有無實根。
這一部分更多的會以選擇題,填空題,或者作為構成大題的一個部件來考核,復習的關鍵是要對這些概念有本質的理解,在此基礎上找習題強化。
▶一元函數微分學
求給定函數的導數與微分(包括高階導數),隱函數和由參數方程所確定的函數求導,特別是分段函數和帶有絕對值的函數可導性的討論;
利用洛比達法則求不定式極限;
討論函數極值,方程的根,證明函數不等式;
利用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理證明有關命題,如“證明在開區間內至少存在一點滿足……”,此類問題證明經常需要構造輔助函數;
幾何、物理、經濟等方面的最大值、最小值應用問題,解這類問題,主要是確定目標函數和約束條件,判定所討論區間;
利用導數研究函數性態和描繪函數圖形,求曲線漸近線。
▶一元函數積分學
計算題:計算不定積分、定積分及廣義積分;
關于變上限積分的題:如求導、求極限等;
有關積分中值定理和積分性質的證明題;
定積分應用題:計算面積,旋轉體體積,平面曲線弧長,旋轉面面積,壓力,引力,變力作功等;
綜合性試題。
▶向量代數和空間解析幾何
計算題:求向量的數量積,向量積及混合積;
求直線方程,平面方程;
判定平面與直線間平行、垂直的關系,求夾角;
建立旋轉面的方程;
與多元函數微分學在幾何上的應用或與線性代數相關聯的題目。
這一部分為數一同學考查,難度在考研數學中應該是相對簡單的,找輔導書上的習題練習,需要做到快速正確的求解。
▶多元函數的微分學
判定一個二元函數在一點是否連續,偏導數是否存在、是否可微,偏導數是否連續;
求多元函數(特別是含有抽象函數)的一階、二階偏導數,求隱函數的一階、二階偏導數;
求二元、三元函數的方向導數和梯度;
求曲面的切平面和法線,求空間曲線的切線與法平面,該類型題是多元函數的微分學與前面向量代數與空間解析幾何的綜合題,應結合起來復習;
多元函數的極值或條件極值在幾何、物理與經濟上的應用題;求一個二元連續函數在一個有界平面區域上的最大值和最小值。這部分應用題多要用到其他領域的知識,考生在復習時要引起注意。
這部分應用題多要用到其他領域的知識,在復習時要引起注意,可以找一些題目做做,找找這類題目的感覺。
▶多元函數的積分學
二重、三重積分在各種坐標下的計算,累次積分交換次序;
第一型曲線積分、曲面積分計算;
第二型(對坐標)曲線積分的計算,格林公式,斯托克斯公式及其應用;
第二型(對坐標)曲面積分的計算,高斯公式及其應用;
梯度、散度、旋度的綜合計算;
重積分,線面積分應用;求面積,體積,重量,重心,引力,變力作功等。數學一考生對這部分內容和題型要引起足夠的重視。
看了"2018考研數學高數高頻考點總結”還看了:
1.2018考研數學要注意的4點
2.2018考研數學高數常考題型
3.2018考研高數導數部分復習重點
4.2018考研數學答題技巧
5.2018考研數學復習技巧
6.2018考研數學選擇題做題方法
7.2018考研數學第一輪復習攻略