初中數學知識點總結及公式大全
怎樣掌握好數學公式這個問題被很多學生頻繁的問起,其實要學好數學并不難,只要掌握一定的學習方法,就能提高學習能力,下面是由小編為大家整理的“初中數學知識點總結及公式大全”,希望對您的工作和生活有所幫助。
初中數學知識點總結及公式大全【篇1】
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做多邊形覆蓋平面(平面鑲嵌)。鑲嵌的條件:當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個時,就能拼成一個平面圖形。
13、公式與性質:
⑴三角形的內角和:三角形的內角和為180°
⑵三角形外角的性質:
性質1:三角形的一個外角等于和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大于任何一個和它不相鄰的內角。
⑶多邊形內角和公式:邊形的內角和等于·180°
⑷多邊形的外角和:多邊形的外角和為360°。
⑸多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形、②邊形共有條對角線。
初中數學知識點總結及公式大全【篇2】
平方根:①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
初中數學知識點總結及公式大全【篇3】
1、圖形的相似
相似多邊形的對應邊的比值相等,對應角相等;
兩個多邊形的對應角相等,對應邊的比值也相等,那么這兩個多邊形相似;
相似比:相似多邊形對應邊的比值。
2、相似三角形
判定:
平行于三角形一邊的直線和其它兩邊相交,所構成的三角形和原三角形相似;
如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;
如果兩個三角形的兩組對應邊的比相等,并且相應的夾角相等,那么兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么兩個三角形相似。
3、相似三角形的周長和面積
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4、位似
位似圖形:兩個多邊形相似,而且對應頂點的連線相交于一點,對應邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。
初中數學知識點總結及公式大全【篇4】
1.軸對稱:
把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱,兩個圖形中的對應點叫做對稱點,對應線段叫做對稱線段。
2.軸對稱圖形:
如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。
注意:對稱軸是直線而不是線段
3.軸對稱的性質:
(1)關于某條直線對稱的兩個圖形是全等形;
(2)如果兩個圖形關于某條直線對稱,那么對稱軸是對應點連線的垂直平分線;
(3)兩個圖形關于某條直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上;
(4)如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱。
4.線段垂直平分線:
(1)定義:垂直平分一條線段的直線是這條線的垂直平分線。
(2)性質:
①線段垂直平分線上的點到這條線段兩個端點的距離相等;
②到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
注意:根據線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點,并且這一點到三個頂點的距離相等。
5.角的平分線:
(1)定義:把一個角分成兩個相等的角的射線叫做角的平分線.
(2)性質:
①在角的平分線上的點到這個角的兩邊的距離相等.
②到一個角的兩邊距離相等的點,在這個角的平分線上.
注意:根據角平分線的性質,三角形的三個內角的平分線交于一點,并且這一點到三條邊的距離相等.
6.等腰三角形的性質與判定:
性質:
(1)對稱性:等腰三角形是軸對稱圖形,等腰三角形底邊上的中線所在的直線是它的對稱軸,或底邊上的高所在的直線是它的對稱軸,或頂角的平分線所在的直線是它的對稱軸;
(2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合;
(3)等邊對等角:等腰三角形的兩個底角相等。
說明:等腰三角形的性質除三線合一外,三角形中的主要線段之間也存在著特殊的性質,如:
①等腰三角形兩底角的平分線相等;
②等腰三角形兩腰上的中線相等;
③等腰三角形兩腰上的高相等;
④等腰三角形底邊上的中點到兩腰的距離相等。
判定定理:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。
7.等邊三角形的性質與判定:
性質:
(1)等邊三角形的三個角都相等,并且每個角都等于60。
(2)等邊三角形具有等腰三角形的所有性質,并且在每條邊上都有三線合一。因此等邊三角形是軸對稱圖形,它有三條對稱軸,而等腰三角形(非等邊三角形)只有一條對稱軸。
判定定理:有一個角是60的等腰三角形是等邊三角形。
說明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。
初中數學知識點總結及公式大全【篇5】
1、概念:
把一個圖形繞著某一點O轉動一個角度的`圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角。
旋轉三要素:旋轉中心、旋轉方面、旋轉角。
2、旋轉的性質:
(1)旋轉前后的兩個圖形是全等形;
(2)兩個對應點到旋轉中心的距離相等。
(3)兩個對應點與旋轉中心的連線段的夾角等于旋轉角。
3、中心對稱:
把一個圖形繞著某一個點旋轉180,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心。
這兩個圖形中的對應點叫做關于中心的對稱點。
4、中心對稱的性質:
(1)關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分。
(2)關于中心對稱的兩個圖形是全等圖形。
5、中心對稱圖形:
把一個圖形繞著某一個點旋轉180,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
6、坐標系中的中心對稱
兩個點關于原點對稱時,它們的坐標符號相反,
即點P(x,y)關于原點O的對稱點P(—x,—y)。
初中數學知識點總結及公式大全【篇6】
1、矩形的概念
有一個角是直角的平行四邊形叫做矩形。
2、矩形的性質
(1)具有平行四邊形的一切性質。
(2)矩形的四個角都是直角。
(3)矩形的對角線相等。
(4)矩形是軸對稱圖形。
3、矩形的判定
(1)定義:有一個角是直角的平行四邊形是矩形。
(2)定理1:有三個角是直角的四邊形是矩形。
(3)定理2:對角線相等的平行四邊形是矩形。
4、矩形的面積:S矩形=長×寬=ab
初三數學重點知識點(四)
1、正方形的概念
有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質
(1)具有平行四邊形、矩形、菱形的一切性質;
(2)正方形的四個角都是直角,四條邊都相等;
(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;
(4)正方形是軸對稱圖形,有4條對稱軸;
(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;
(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。
3、正方形的判定
(1)判定一個四邊形是正方形的主要依據是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個角是直角。
(2)判定一個四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。
初中數學知識點總結及公式大全【篇7】
1、圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2、垂直于弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條弧;
平分弦的直徑垂直弦,并且平分弦所對的兩條弧。
3、弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
4、圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5、點和圓的位置關系
點在圓外
點在圓上d=r
點在圓內d
定理:不在同一條直線上的三個點確定一個圓。
三角形的外接圓:經過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。
6、直線和圓的位置關系
相交d
相切d=r
相離d>r
切線的性質定理:圓的切線垂直于過切點的半徑;
切線的判定定理:經過圓的外端并且垂直于這條半徑的直線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。
7、圓和圓的位置關系
外離d>R+r
外切d=R+r
相交R—r
內切d=R—r
內含d
8、正多邊形和圓
正多邊形的中心:外接圓的圓心
正多邊形的半徑:外接圓的半徑
正多邊形的中心角:沒邊所對的圓心角
正多邊形的邊心距:中心到一邊的距離
9、弧長和扇形面積
弧長
扇形面積:
10、圓錐的側面積和全面積
側面積:
全面積
11、(附加)相交弦定理、切割線定理
第五章概率初步
1、概率意義:在大量重復試驗中,事件A發生的頻率穩定在某個常數p附近,則常數p叫做事件A的概率。
2、用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,并且它們發生的概率相等,事件A包含其中的m中結果,那么事件A發生的概率就是p(A)=
3、用頻率去估計概率
初中數學知識點總結及公式大全【篇8】
1、一元二次方程解法:
(1)配方法:(X±a)2=b(b≥0)注:二次項系數必須化為1
(2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0
若b2-4ac>0則有兩個不相等的實根,若b2-4ac=0則有兩個相等的實根,若b2-4ac<0則無解
若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式
(3)分解因式法
①提公因式法:ma+mb=0→m(a+b)=0
平方差公式:a2-b2=0→(a+b)(a-b)=0
②運用公式法:
完全平方公式:a2±2ab+b2=0→(a±b)2=0
③十字相乘法
2、銳角三角函數定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。
正弦(sin):對邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對邊,即cotA=b/a;
3、積的關系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數關系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
5、兩角和差公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
初中數學知識點總結及公式大全【篇9】
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質:⑴矩形具有平行四邊形的一切性質;
⑵菱形的四條邊都相等;
⑶菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
⑷菱形是軸對稱圖形。
提示:利用菱形的性質可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯系,可得對角線與邊之間的關系,即邊長的平方等于對角線一半的平方和。
3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
4、因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④因式分解與整式乘法的關系:m(a+b+c)
5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
6、公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。
8、平方根表示法:一個非負數a的平方根記作,讀作正負根號a。a叫被開方數。
9、中被開方數的取值范圍:被開方數a≥0
10、平方根性質:①一個正數的平方根有兩個,它們互為相反數。②0的平方根是它本身0。③負數沒有平方根開平方;求一個數的平方根的運算,叫做開平方。
11、平方根與算術平方根區別:定義不同、表示方法不同、個數不同、取值范圍不同。
12、聯系:二者之間存在著從屬關系;存在條件相同;0的算術平方根與平方根都是0
13、含根號式子的意義:表示a的平方根,表示a的算術平方根,表示a的負的平方根。
14、求正數a的算術平方根的方法;
完全平方數類型:①想誰的平方是數a。②所以a的平方根是多少。③用式子表示。
求正數a的算術平方根,只需找出平方后等于a的正數。
初中數學知識點總結及公式大全【篇10】
一、基本知識
一、數與代數
A、數與式:
1、有理數:①整數→正整數,0,負整數;
②分數→正分數,負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。
②任何一個有理數都可以用數軸上的一個點來表示。
③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。
④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。
②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:帶上符號進行正常運算。
加法:
①同號相加,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
③一個數與0相加不變。
減法:減去一個數,等于加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。
②任何數與0相乘得0。
③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等于乘以一個數的倒數。
②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數或指數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數
無理數
無理數:無限不循環小數叫無理數,例如:π=3.1415926…
平方根:①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。
②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。
③一個正數有2個平方根;0的平方根為0;負數沒有平方根。
④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。
②正數的立方根是正數、0的立方根是0、負數的立方根是負數。
③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。
②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣;
③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合并同類項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類項;②把同類項合并成一項就叫做合并同類項。
③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。
②一個單項式中,所有字母的指數和叫做這個單項式的次數。
③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:
A^M+A^N=A^(M+N)
(A^M)^N=A^(MN
)
(A/B)^N=A^N/B^N
除法一樣。
整式的乘法:
①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。
②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);
完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。
整式的除法:①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
解二元一次方程組的方法:代入消元法;加減消元法。
一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程:ax^2+bx+c=0;
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y=0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖像與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a
,4ac-b^2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元二次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao
ta”,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△B,則A+C>B+C;
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;
例如:如果A>B,則A-C>B-C;
在不等式中,如果乘以同一個正數,不等式符號不改向;
例如:如果A>B,則A__C>B__C(C>0);
在不等式中,如果乘以同一個負數,不等號改向;
例如:如果A>B,則A__C<B__C(C<0);
如果不等式乘以0,那么不等號改為等號;
所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘的數就不等于0,否則不等式不成立;
3、函數
變量:因變量Y,自變量X。
在用圖像表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。
一次函數:①若兩個變量X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱Y是X的一次函數。
②當B=0時,稱Y是X的正比例函數。
一次函數的圖像:
①把一個函數的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖像。
②正比例函數Y=KX的圖像是經過原點的一條直線。
③在一次函數中,當K〈0,B〈O時,則經234象限;
當K〈0,B〉0時,則經124象限;
當K〉0,B〈0時,則經134象限;
當K〉0,B〉0時,則經123象限。
④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。
②面與面相交得線,線與線相交得點。
③點動成線,線動成面,面動成體。
展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。
②N棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。
②將線段向一個方向無限延長就形成了射線。射線只有一個端點。
③將線段的兩端無限延長就形成了直線。直線沒有端點。
④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。兩點之間直線最短。
②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
②一度的1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。
②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角,180。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角,360。
③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。
②經過直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。
②互相垂直的兩條直線的交點叫做垂足。
③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。
性質定理:角平分線上的點到該角兩邊的距離相等;
判定定理:到角的兩邊距離相等的點在該角的角平分線上;
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
——補角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理:經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理
三角形兩邊的和大于第三邊
16、推論
三角形兩邊的差小于第三邊
17、三角形內角和定理:
三角形三個內角的和等于180°
18、推論1
直角三角形的兩個銳角互余
19、推論2
三角形的一個外角等于和它不相鄰的兩個內角的和
20、推論3
三角形的一個外角大于任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理(
ASA):有兩角和它們的夾邊對應相等的
兩個三角形全等
24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS):有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1
在角的平分線上的點到這個角的兩邊的距離相等
28、定理2
到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、推論1
等腰三角形頂角的平分線平分底邊并且垂直于底邊
31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;
32、推論3
等邊三角形的各角都相等,并且每一個角都等于60°
33、等腰三角形的判定定理
如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
34、等腰三角形的性質定理
等腰三角形的兩個底角相等
(即等邊對等角)
35、推論1
三個角都相等的三角形是等邊三角形
36、推論
有一個角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理
線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理
和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1
關于某條直線對稱的兩個圖形是全等形
43、定理
如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3
兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45、逆定理
如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46、勾股定理
直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形
48、定理
四邊形的內角和等于360°
49、四邊形的外角和等于360°
50、多邊形內角和定理
n邊形的內角的和等于(n-2)×180°
51、推論
任意多邊的外角和等于360°
52、平行四邊形性質定理1
平行四邊形的對角相等
53、平行四邊形性質定理2
平行四邊形的對邊相等
54、推論
夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3
平行四邊形的對角線互相平分
56、平行四邊形判定定理1
兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2
兩組對邊分別相等的四邊
形是平行四邊形
58、平行四邊形判定定理3
對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4
一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1
矩形的四個角都是直角
61、矩形性質定理2
矩形的對角線相等
62、矩形判定定理1
有三個角是直角的四邊形是矩形
63、矩形判定定理2
對角線相等的平行四邊形是矩形
64、菱形性質定理1
菱形的四條邊都相等
65、菱形性質定理2
菱形的對角線互相垂直,并且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1
四邊都相等的四邊形是菱形
68、菱形判定定理2
對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1
正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71、定理1
關于中心對稱的.兩個圖形是全等的
72、定理2
關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73、逆定理
如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74、等腰梯形性質定理
等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理
在同一底上的兩個角相等的梯
形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理
如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1
經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2
經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理
三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理
梯形的中位線平行于兩底,并且等于兩底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理
三條平行線截兩條直線,所得的對應線段成比例
87、推論
平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理
如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,
所截得的三角形的三邊與原三角形三邊對應成比例
90、定理
平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1
兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2
兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3
三邊對應成比例,兩三角形相似(SSS)
95、定理
如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似(HL)
96、性質定理1
相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
97、性質定理2
相似三角形周長的比等于相似比
98、性質定理3
相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
(a<90)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圓是定點的距離等于定長的點的集合
102、圓的內部可以看作是圓心的距離小于半徑的點的集合
103、圓的外部可以看作是圓心的距離大于半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理
不在同一直線上的三點確定一個圓。
110、垂徑定理
垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧(直徑)
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理
一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1
同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2
半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3
如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120、定理
圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角
121、①直線L和⊙O相交
0<=d<r
②直線L和⊙O相切
d=r
③直線L和⊙O相離
d>r
122、切線的判定定理
經過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質定理
圓的切線垂直于經過切點的半徑
124、推論1
經過圓心且垂直于切線的直線必經過切點
125、推論2
經過切點且垂直于切線的直線必經過圓心
126、切線長定理
從圓外一點引圓的兩條切線相交與一點,它們的切線長相等
,圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對的圓周角?
129、推論
如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130、相交弦定理
圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理
從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?
133、推論
從圓外一點引圓的兩條割線,這一點到每條
割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離
d>R+r
②兩圓外切
d=R+r
③兩圓相交
R-r<d<R+r(R>r)
④兩圓內切
d=R-r(R>r)
⑤兩圓內含
d<R-r(R>r)
136、定理
相交兩圓的連心線垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理
任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等于(n-2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pn__rn/2
p表示正n邊形的周長
142、正三角形面積√3a^2/4
a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長=d-(R-r)
外公切線長=d-(R+r)